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Properties of the Gibbs function have been investigated for an ideal gaseous mixture in a closed 
reacting system with N components. A proof has been performed of the convex course of the 
Gibbs function as a fu~ction of reaction coordinates in the entire physical region and consequen­
ces are given which secure unambiguity of the solution for chemical equilibrium of ideal gaseous 
mixtures. 

Methods based on the minimization of the Gibbs function have recently become widely used 
for determining the equilibrium composition of gaseous mixtures. In comparison with earlier 
methods based on the characterization of the reacting system by the equilibrium constants dis­
play these methods, firstly proposed for general use by Dantzig1

•
4

, indisputable advantages. 
They avoid the necessity of performing an a priori stoichiometric analysis, the number of equa­
tions is given by the number of elements and not by that of possible components, which leads 
to a relatively small number of nonlinear equations with good convergence of the solution. 

A necessary condition for the convergence is that the total Gibbs function of the 
system considered have a single minimum in the physical region. A proof is given 
in the following text that the course of this function is really convex and that the 
problem has a unique solution in the region considered. 

A closed system composed of M elements and N components, in which a chemical 
reaction may proceed, can be described by two basic sets of relations: balance and 
reaction ones. The first of them determines relative quantities of individual compo­
nents at the constant total amount of each of present elements and is expressed by the 
relations 

N 

L: a;jn; = b i j = 1, 2, ... , M, 
i=l 

(1) 

where aii is the constitution coefficient which denotes the number of gram atoms of the 
j-th element in the i"th component, bi is the total number of gram atoms of the j-th 
element in the system and n; is the number of moles of the i-th component. 
The reaction set determines the overall chemical transformation of the system by R 

linearly independent reactions 
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N 

I vriAi = 0 r = 1, 2, ... , R , 
i=l 

Voiika, Holub: 

(2) 

where vri is the stoichiometric coefficient of the i-th component in the r"th reaction 
and Ai is the symbol for the i-th component . . 

The determination of chemical equilibrium in a closed system at a constant tem­
perature and pressure is equivalent to finding a minimum in the Gibbs function, 
which, for an ideal mixture of ideal gases (and to a multiple of RT) has the form of 

N 

G = I ni( ci + ln ni - ln n) , (3) 
i=l 

where ci = G?/RT + ln P, G? is the standard molar Gibbs free energy of the i-th 
component. The minimum in the Gibbs function must be searched for oa the set 
of points fulfilling equations of the material balance ( 1). 

M 

By connecting Eqs (2) and the relation Ai = I aijBj, where Bj is the symbol for 
j=l 

the j-th element, the following relation may be deduced2 

R=N-H, (4) 

where H is the rank of the matrix of the constitution coefficients (in practical cases 
it usually holds H = M). Value R in relation ( 4) must be looked upon as the maximal 
number of linearly independent reactions which may proceed in the system. The 
material ' balance of the system may be expressed in a form which is equivalent 
to Eqs (I) 

R 

ni = n~ + I vri~r i = 1, 2, ... , N, (5) 
r=l 

where n? is the initial number of moles of the i-th component and ~r is the reaction 
R 

coordinate. Let set Q be a set of such ( ~ 1 , ~ 2 , .. . ; ~R) that it holds ni = n? + I vri~r > 
> 0 for i = 1, ... , N. r= 

1 

We will now study properties of function G = G(~ 1 , ~ 2 , ... , ~R) on set Q. We will 
prove that function G is convex on the set, i.e. that the quadratic form of the second 
differential is positively definite, or 

R R 

I I q.kh.hk > o (6) 
s=l k=l 

for an arbitrary vector h such that JJhJJ =!= 0, where qsk = 82 Gja~. a~k· In technical 
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practice, d~; is often used instead of h;. Relation (6) is equivalent to well-known 
Sylvester's relations, which state that leading minors of matrix { q;j} are positive. 
It follows from relations (3) and (5) that 

N N 

N 

qsk = L V5;vkJn; - v<•>v<k>Jn, 
i=l 

s = 1, 2, .. . , R, k = 1, 2, . .. , R, 

(7) 

where n = 2:: n; , v<P> = I vp; , p = 1, 2, ... , R. Substituting Eq. (7) into inequality 
i=l i=l 

(6) we obtain 

N 

2:: (ann;) - a2/n > o, (8) 
i=l 

where 

(9) 

If we want to prove inequality (8), we must secure (see Appendix) that at arbitrary 
n; > 0, i = 1, ... , Nit is not possible to choose such a vector h(lih !J =I= 0) that it holds 

IX; = anJn i = 1, 2, ... , N . (10) 

Substituting Eq. (9) into Eq. (10) we obtain the set of equations 

R 

I (vp; - n;v<P>jn) hP = 0 i = 1, 2, ... , N. (11) 
p=l 

The solution of set (11) will be trivial (h 1 = h2 = .. . = hR = 0) only for the rank 
of the matrix of set ( 11) equal to R. The i-th row of the matrix of set ( 11) is equal 
to the difference between the i-th row of the matrix of stoichiometric coefficients 
and the sum of all rows of the same matrix multiplied by the number n;jn. In view 
of the fact that the rank of the matrix of stoichiometric coefficients is equal toR (con­
sidering R linearly independent reactions), the rank of the matrix of set (11) is also 
equal toR. Relation (8) may be also proved by physical reasons. It is obvious from 
relations (9) and (5) that the value IX; denotes the increment in the number of moles 
of the i-th component. In a closed system, however, all a;s, i = 1, . . . , N cannot 
have the same sign: This is in contradiction with relation (10) (also see Appendix). 
By this we have proved that function G is convex on the entire set Q. As a result, 
function G can have at most one minimum on this set. 
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We still want to prove that the minimum of function G lies always inside set Q. 

We must namely realize that convexity ensures only unambiguity but not existence 
of a. minimum (e.g. function exp (x) is convex on (- oo, oo ), but it has no minimum 
on this set). It follows from Eqs (3) and (5) that 

N 

aGja~s = L vs/c; + ln ndn) s = 1, 2, .. . , R. (12) 
i=l 

For a given value of s, i.e. for a given s-th reaction, at least one positive and one nega­
tive stoichiometric coefficient exist. We may let the s-th reaction proceed from its 
left to right side; then at least one n; ~ 0+ and aGja~. ~ oo, because of v.; < 0. 
Similarly for the reaction proceeding completely from its right to left side, it holds 
for another n; ~ 0+ and aGja~. ~ - oo, as v.; > 0. This proves the existence 
and unambiguity of the minimum on set Q. 

This property of the G-function has several consequences: 

1) The ideal mixture of ideal gases cannot split into two and more phases after 
chemical equilibrium has been established (this is due to the convexity of the G-func-
tion). · 

2) The set of equations 

N 

l:v.;(c; + lnndn) = 0 s = 1,2, ... ,R (13) 
i=l 

has just one solution ( ~ 1, ~2 , .•• , ~R) in Q. It may be proved easily that also the set 
of equations 

N 

TI (n;Pjn)•at = K. s = 1, 2, ... , R (14) 
i=l 

has just one solution in Q (K. is the equilibrium constant of the s-th reaction). Taking 
logarithms of Eqs (14) and using the thermodynamic relation 

N 

RTlnK •. = - L V8;G? s = 1, 2, ... , R 
i=l 

(15) 

we obtain a set of equations identical with set ( 13). The existence and unambiguity 
of the solution ofEq. (14) in Q for R = 1 have been proved earlier3

• 

Set ( 14), resp. ( 13), is a system of R equations for R unknowns. It is more advantage­
ous to minimize the G-function at constraints expressed by material balance equa­
tions (I) than Eqs ( 5) during solving a complex chemical equilibrium, when the number 
of components, N, is large (and, consequently, the number of reactions, R, is also 
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large). Although both procedures are obviously entirely mathematically equivalent, 
the first one avoids the necessity of knowing the matrix of stoichiometric coefficients 
anci the resulting set of equations is of the dimension equal to M, where M is the 
number of elements in the system. A concrete elaboration of different variants of this 
method is e.g. in4

•
5

. 

APPENDIX 

The inequality 
N 

L (affn)- a2 /n ~ 0 (16) 
i=l 

N N 
holds for all ni > 0, ai i = 1, 2, ... , N, where n = 2: nk and a= 2:.: ak. Relation (16) becomes 
equality just for k=1 k=1 

adni = afn i= 1, 2, ... , N. (17) 

Inequality (16) may be proved easily by searching for the minimum of the 1hs of relation (16). 
Let us note that a necessary condition for the equality in relation (16) is that all values of ai have 
the same sign. 

Thanks are due to Dr A. Malijevsky and Dr J.P. Novak for stimulating discussions. 
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